Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 670
1.
Elife ; 132024 May 01.
Article En | MEDLINE | ID: mdl-38690995

PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.


Chromatin , Drosophila Proteins , Histones , Poly (ADP-Ribose) Polymerase-1 , Transcription, Genetic , Animals , Chromatin/metabolism , Chromatin/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Histones/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Methylation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Heat-Shock Response
2.
JCO Precis Oncol ; 8: e2300495, 2024 Apr.
Article En | MEDLINE | ID: mdl-38635931

PURPOSE: High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive cancer with a complex biology. We aimed to explore the prognostic value of genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in HGNEC and to establish a novel prognostic model. MATERIALS AND METHODS: We retrospectively enrolled 191 patients with histologically confirmed HGNEC of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry (IHC; N = 191) and comprehensive cancer panel sequencing (n = 102). Clinical and genetic data were used to develop an integrated Cox hazards model. RESULTS: Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%) patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an integrated Cox hazard model, our data set included information from 357 gene mutations and 19 clinical profiles. When the targeted mutation profiles were combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1, IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prognostic factors for survival. The integrated Cox hazard model, which combines mutation profiles with a baseline model, outperformed the baseline model (incremental area under the curve 0.84 v 0.78; P = 8.79e-12). The integrated model stratified patients into high- and low-risk groups with significantly different disease-free and overall survival (integrated model: hazard ratio, 7.14 [95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01). CONCLUSION: We introduced a new prognostic model for HGNEC that combines genetic and clinical data. The integrated Cox hazard model outperformed the baseline model in predicting the survival of patients with HGNEC.


Carcinoma, Neuroendocrine , Lung Neoplasms , Humans , Prognosis , Poly (ADP-Ribose) Polymerase-1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Retrospective Studies , Carcinoma, Neuroendocrine/genetics , Lung/metabolism , Lung/pathology , Genomics
3.
Nat Commun ; 15(1): 2857, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565848

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.


DNA Repair , DNA , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/metabolism , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , Telomere/genetics , Telomere/metabolism
4.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657044

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Checkpoint Kinase 1 , DNA Replication , Poly (ADP-Ribose) Polymerase-1 , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Mice , Humans , DNA Damage , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
5.
Sci Rep ; 14(1): 7530, 2024 03 29.
Article En | MEDLINE | ID: mdl-38553566

Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.


Chromatin , Poly(ADP-ribose) Polymerases , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/metabolism , DNA Repair , RNA , Adenosine Diphosphate Ribose/metabolism , Oligonucleotides
6.
Int J Biol Sci ; 20(5): 1602-1616, 2024.
Article En | MEDLINE | ID: mdl-38481797

Myocardial infarction causes cardiomyocyte loss, and depleted cardiomyocyte proliferative capacity after birth impinges the heart repair process, eventually leading to heart failure. This study aims to investigate the role of Poly(ADP-Ribose) Polymerase 1 (PARP1) in the regulation of cardiomyocyte proliferation and heart regeneration. Our findings demonstrated that PARP1 knockout impaired cardiomyocyte proliferation, cardiac function, and scar formation, while PARP1 overexpression improved heart regeneration in apical resection-operated mice. Mechanistically, we found that PARP1 interacts with and poly(ADP-ribosyl)ates Heat Shock Protein 90 Alpha Family Class B Member 1 (HSP90AB1) and increases binding between HSP90AB1 and Cell Division Cycle 37 (CDC37) and cell cycle kinase activity, thus activating cardiomyocyte cell cycle. Our results reveal that PARP1 promotes heart regeneration and cardiomyocyte proliferation via poly(ADP-ribosyl)ation of HSP90AB1 activating the cardiomyocyte cell cycle, suggesting that PARP1 may be a potential therapeutic target in treating cardiac injury.


Myocardial Infarction , Myocytes, Cardiac , Animals , Mice , Cell Proliferation/genetics , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
7.
Adv Biol (Weinh) ; 8(5): e2400028, 2024 May.
Article En | MEDLINE | ID: mdl-38463014

Emerging evidence has implicated nicotinamide adenine dinucleotide (NAD+) metabolism in various inflammatory diseases. In the study, the role of NAD+ metabolism in Complete Freund's Adjuvant (CFA)-evoked inflammatory pain and the underlying mechanisms are investigated. The study demonstrated that CFA induced upregulation of nicotinamide phosphoribosyltransferase (NAMPT) in dorsal root ganglia (DRG) without significant changes in the spinal cord. Inhibition of NAMPT expression by intrathecal injection of NAMPT siRNA alleviated CFA-induced pain-like behavior, decreased NAD+ contents in DRG, and lowered poly-(ADP-ribose) polymerase 1 (PARP1) activity levels. These effects are all reversed by the supplement of nicotinamide mononucleotide (NMN). Inhibition of PARP1 expression by intrathecal injection of PARP1 siRNA alleviated CFA-induced pain-like behavior, while elevated NAD+ levels of DRG. The analgesic effect of inhibiting NAMPT/NAD+/PARP1 axis can be attributed to the downregulation of the NF-κB/IL-1ß inflammatory pathway. Double immunofluorescence staining showed that the expression of NAMPT/NAD+/PARP1 axis is restricted to DRG neurons. In conclusion, PARP1 activation in response to CFA stimulation, fueled by NAMPT-derived NAD+, mediates CFA-induced inflammatory pain through NF-κB/IL-1ß inflammatory pathway.


Ganglia, Spinal , NAD , Nicotinamide Phosphoribosyltransferase , Poly (ADP-Ribose) Polymerase-1 , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Male , Mice , Freund's Adjuvant , Inflammation/metabolism , Cytokines/metabolism , Pain/metabolism , NF-kappa B/metabolism
8.
Cell Rep ; 43(3): 113845, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38393943

Poly(ADP-ribosyl)ation (PARylation), catalyzed mainly by poly(ADP-ribose) polymerase (PARP)1, is a key posttranslational modification involved in DNA replication and repair. Here, we report that TIMELESS (TIM), an essential scaffold of the replisome, is PARylated, which is linked to its proteolysis. TIM PARylation requires recognition of auto-modified PARP1 via two poly(ADP-ribose)-binding motifs, which primes TIM for proteasome-dependent degradation. Cells expressing the PARylation-refractory TIM mutant or under PARP inhibition accumulate TIM at DNA replication forks, causing replication stress and hyper-resection of stalled forks. Mechanistically, aberrant engagement of TIM with the replicative helicase impedes RAD51 loading and protection of reversed forks. Accordingly, defective TIM degradation hypersensitizes BRCA2-deficient cells to replication damage. Our study defines TIM as a substrate of PARP1 and elucidates how the control of replisome remodeling by PARylation is linked to stalled fork protection. Therefore, we propose a mechanism of PARP inhibition that impinges on the DNA replication fork instability caused by defective TIM turnover.


Poly ADP Ribosylation , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/metabolism , DNA Damage , DNA Replication
9.
Sci Rep ; 14(1): 4402, 2024 02 22.
Article En | MEDLINE | ID: mdl-38388665

The DNA repair gene PARP1 and NF-κB signalling pathway affect the metastasis of breast cancer by influencing the drug resistance of cancer cells. Therefore, this study focused on the value of the DNA repair gene PARP1 and NF-κB pathway proteins in predicting the postoperative metastasis of breast cancer. A nested case‒control study was performed. Immunohistochemical methods were used to detect the expression of these genes in patients. ROC curves were used to analyse the predictive effect of these factors on distant metastasis. The COX model was used to evaluate the effects of PARP1 and TNF-α on distant metastasis. The results showed that the expression levels of PARP1, IKKß, p50, p65 and TNF-α were significantly increased in the metastasis group (P < 0.001). PARP1 was correlated with IKKß, p50, p65 and TNF-α proteins (P < 0.001). There was a correlation between IKKß, p50, p65 and TNF-α proteins (P < 0.001). ROC curve analysis showed that immunohistochemical scores for PARP1 of > 6, IKKß of > 4, p65 of > 4, p50 of > 2, and TNF-α of > 4 had value in predicting distant metastasis (SePARP1 = 78.35%, SpPARP1 = 79.38%, AUCPARP1 = 0.843; Sep50 = 64.95%, Spp50 = 70.10%, AUCp50 = 0.709; SeTNF-α = 60.82%, SpTNF-α = 69.07%, AUCTNF-α = 0.6884). Cox regression analysis showed that high expression levels of PARP1 and TNF-α were a risk factor for distant metastasis after breast cancer surgery (RRPARP1 = 4.092, 95% CI 2.475-6.766, P < 0.001; RRTNF-α = 1.825, 95% CI 1.189-2.799, P = 0.006). Taken together, PARP1 > 6, p50 > 2, and TNF-α > 4 have a certain value in predicting breast cancer metastasis, and the predictive value is better when they are combined for diagnosis (Secombine = 97.94%, Spcombine = 71.13%).


Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/surgery , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Case-Control Studies , Transcription Factor RelA/metabolism , DNA Repair/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
10.
Cells ; 13(4)2024 Feb 06.
Article En | MEDLINE | ID: mdl-38391916

Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase ß, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.


DNA Repair , Excision Repair , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Extracts , Cell Line , X-ray Repair Cross Complementing Protein 1/genetics , Poly (ADP-Ribose) Polymerase-1/genetics
11.
J Exp Clin Cancer Res ; 43(1): 53, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383387

BACKGROUND: Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS: We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS: IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION: PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.


Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Mice , Animals , Early Detection of Cancer , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/genetics , Barrett Esophagus/diagnosis , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/genetics , Mice, Transgenic , Endoscopy , Poly (ADP-Ribose) Polymerase-1/genetics
12.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38320550

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


DNA Repair , Poly (ADP-Ribose) Polymerase-1 , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Damage , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Humans
13.
Oncogene ; 43(12): 866-883, 2024 Mar.
Article En | MEDLINE | ID: mdl-38297082

Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/ß-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/ß-catenin pathway by stabilising FOXQ1 expression.


Ovarian Neoplasms , beta Catenin , Animals , Humans , Female , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation , Poly (ADP-Ribose) Polymerase-1/genetics
14.
Oncogene ; 43(9): 682-692, 2024 Feb.
Article En | MEDLINE | ID: mdl-38216672

Hepatocellular carcinoma (HCC) stands as the fifth most prevalent malignant tumor on a global scale and presents as the second leading cause of cancer-related mortality. DNA damage-based radiotherapy (RT) plays a pivotal role in the treatment of HCC. Nevertheless, radioresistance remains a primary factor contributing to the failure of radiation therapy in HCC patients. In this study, we investigated the functional role of transketolase (TKT) in the repair of DNA double-strand breaks (DSBs) in HCC. Our research unveiled that TKT is involved in DSB repair, and its depletion significantly reduces both non-homologous end joining (NHEJ) and homologous recombination (HR)-mediated DSB repair. Mechanistically, TKT interacts with PARP1 in a DNA damage-dependent manner. Furthermore, TKT undergoes PARylation by PARP1, resulting in the inhibition of its enzymatic activity, and TKT can enhance the auto-PARylation of PARP1 in response to DSBs in HCC. The depletion of TKT effectively mitigates the radioresistance of HCC, both in vitro and in mouse xenograft models. Moreover, high TKT expression confers resistance of RT in clinical HCC patients, establishing TKT as a marker for assessing the response of HCC patients who received cancer RT. In summary, our findings reveal a novel mechanism by which TKT contributes to the radioresistance of HCC. Overall, we identify the TKT-PARP1 axis as a promising potential therapeutic target for improving RT outcomes in HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , DNA Breaks, Double-Stranded , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/pathology , Transketolase/genetics , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Liver Neoplasms/pathology , DNA Repair , DNA , DNA End-Joining Repair , Recombinational DNA Repair , Poly (ADP-Ribose) Polymerase-1/genetics
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167031, 2024 03.
Article En | MEDLINE | ID: mdl-38253214

Chronic psychological stress contributes to the occurrence of cancer and activates the renin-angiotensin system (RAS). However, the mechanisms by which RAS promotes the progression of breast cancer (BRCA) under chronic psychological stress are remain unknown. In this study, we observed elevated levels of Angiotensin II (Ang II) in both serum and BRCA tissue under chronic stress, leading to accelerated BRCA growth in a mouse model. An antihypertensive drug, candesartan (an AT1 inhibitor), effectively attenuated Ang II-induced cell proliferation and metastasis. Utilizing mass spectrometry and weighted gene co-expression network analysis (WGCNA), we identified fibronectin 1 (FN1) as the hub protein involved in chronic stress-Ang II/AT1 axis. Focal adhesion pathway was identified as a downstream signaling pathway activated during the progression of chronic stress. Depletion of FN1 significantly attenuated Ang II-induced proliferation and metastasis of BRCA cells. Poly (ADP-ribose) polymerase 1 (PARP1) was found to bind to the DNA promoter of FN1, leading to the transcription of FN1. Ang II upregulated PARP1 expression, resulting in increased FN1 levels. Recombinant FN1 partially restored the progress of BRCA malignancy induced by the Ang II/PARP1 pathway. In vivo, candesartan reversed the progressive effect of chronic psychological stress on BRCA. In clinical samples, Ang II levels in both serum and tumor tissues are higher in stressed patients compared to control patients. Serum Ang II levels were positively correlated with chronic stress indicators. In conclusion, our study demonstrated that chronic psychological stress accelerates the malignancy of BRCA, and the AT1 inhibitor candesartan counteracts these effects by suppressing the Ang II-AT1 axis and the downstream PARP1/FN1/focal adhesion pathway.


Angiotensin II , Benzimidazoles , Biphenyl Compounds , Breast Neoplasms , Tetrazoles , Mice , Animals , Humans , Female , Angiotensin II/metabolism , Antihypertensive Agents , Fibronectins , Breast Neoplasms/drug therapy , Poly (ADP-Ribose) Polymerase-1/genetics
16.
J Biol Chem ; 300(3): 105671, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272222

Poly(ADP-ribosyl)ation (PARylation) is a critical posttranslational modification that plays a vital role in maintaining genomic stability via a variety of molecular mechanisms, including activation of replication stress and the DNA damage response. The nudix hydrolase NUDT16 was recently identified as a phosphodiesterase that is responsible for removing ADP-ribose units and that plays an important role in DNA repair. However, the roles of NUDT16 in coordinating replication stress and cell cycle progression remain elusive. Here, we report that SETD3, which is a member of the SET-domain containing protein (SETD) family, is a novel substrate for NUDT16, that its protein levels fluctuate during cell cycle progression, and that its stability is strictly regulated by NUDT16-mediated dePARylation. Moreover, our data indicated that the E3 ligase CHFR is responsible for the recognition and degradation of endogenous SETD3 in a PARP1-mediated PARylation-dependent manner. Mechanistically, we revealed that SETD3 associates with BRCA2 and promotes its recruitment to stalled replication fork and DNA damage sites upon replication stress or DNA double-strand breaks, respectively. Importantly, depletion of SETD3 in NUDT16-deficient cells did not further exacerbate DNA breaks or enhance the sensitivity of cancer cells to IR exposure, suggesting that the NUDT16-SETD3 pathway may play critical roles in the induction of tolerance to radiotherapy. Collectively, these data showed that NUDT16 functions as a key upstream regulator of SETD3 protein stability by reversing the ADP-ribosylation of SETD3, and NUDT16 participates in the resolution of replication stress and facilitates HR repair.


ADP-Ribosylation , Neoplasms , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , Neoplasms/genetics , Neoplasms/radiotherapy , Poly (ADP-Ribose) Polymerase-1/genetics , Protein Processing, Post-Translational , Humans , Cell Line , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism
17.
Ageing Res Rev ; 94: 102206, 2024 Feb.
Article En | MEDLINE | ID: mdl-38278370

Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.


Adenosine Diphosphate Ribose , DNA Damage , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Adenosine Diphosphate Ribose/metabolism , Proteolysis , Cellular Senescence/genetics
18.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Article En | MEDLINE | ID: mdl-37967363

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Leukemia , Spliceosomes , Humans , Spliceosomes/genetics , R-Loop Structures , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Repair , Leukemia/drug therapy , Leukemia/genetics , RNA Splicing Factors/genetics , Poly (ADP-Ribose) Polymerase-1/genetics
19.
Cancer Gene Ther ; 31(1): 94-107, 2024 01.
Article En | MEDLINE | ID: mdl-37949945

The replication-stress response is essential to ensure the faithful transmission of genetic information to daughter cells. Although several stress-resolution pathways have been identified to deal with replication stress, the precise regulatory mechanisms for replication fork stability are not fully understood. Our study identified Methyl-CpG Binding Domain 1 (MBD1) as essential for the maintaining genomic stability and protecting stalled replication forks in mammalian cells. Depletion of MBD1 increases DNA lesions and sensitivity to replication stress. Mechanistically, we found that loss of MBD1 leads to the dissociation of Poly(ADP-ribose) polymerase 1 (PARP1) from the replication fork, potentially accelerating fork progression and resulting in higher levels of transcription-replication conflicts (T-R conflicts). Using a proximity ligation assay combined with 5-ethynyl-2'-deoxyuridine, we revealed that the MBD1 and PARP1 proteins were recruited to stalled forks under hydroxyurea (HU) treatment. In addition, our study showed that the level of R-loops also increased in MBD1-delated cells. Without MBD1, stalled replication forks resulting from T-R conflicts were primarily degraded by the DNA2 nuclease. Our findings shed light on a new aspect of MBD1 in maintaining genome stability and providing insights into the mechanisms underlying replication stress response.


DNA Damage , DNA Replication , Humans , Animals , Genomic Instability , Mammals/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
20.
Environ Res ; 241: 117631, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37972809

BACKGROUND: DNA damage caused by exposure to metal mixtures and the potential modulating role of genes involved in DNA repair and the antioxidant response have not been evaluated in newborns. AIM: The aim was to evaluate the association between prenatal exposure to metal mixtures and DNA repair capacity (DRC) in newborns from the Metropolitan Area of Mexico City (MAMC), a heavily polluted area, and the impact of variants in genes involved in DNA repair and the antioxidant response on this association. METHODS: We analyzed cord blood samples obtained at delivery from 125 healthy newborns from the MAMC. Twenty-four elements were determined by inductively coupled plasma mass spectrometry (ICP‒MS), but only 12 (Cu, I, Se, Zn, As, Ba, Cs, Mn, Sb, Sr, Pb, and Ti) were quantified in most samples. DRC was assessed by the challenge-comet assay, and OGG1, PARP1, and NFE2L2 genotyping was performed with TaqMan probes. Metal mixtures were identified and analyzed using principal component analysis (PCA) and weighted quantile sum (WQS) regression. Independent adjusted linear regression models were used to evaluate the associations. RESULTS: A null DRC was observed in 46% of newborns. The metals with the highest concentrations were Mn, Sr, Ti, and Pb. Essential elements showed normal levels. Only the mixture characterized by increased As, Cs, Cu, Se, and Zn levels was inversely associated with DRC. As was the principal contributor (37.8%) in the negative direction in the DRC followed by Ba and Sb, according to the WQS regression. Newborns carrying of the derived (G) allele of the PARP1 rs1136410 variant showed decreased DRC by exposure to some potentially toxic metals (PTMs) (As, Cs, and Ba). CONCLUSION: Prenatal exposure to metal mixtures negatively affected DRC in newborns, and the PARP1 rs1136410 variant had a modulating role in this association.


Antioxidants , Prenatal Exposure Delayed Effects , Pregnancy , Female , Infant, Newborn , Humans , Lead , DNA Damage , DNA Repair , Poly (ADP-Ribose) Polymerase-1/genetics
...